

Microtemporality: At The Time When Loading-in-progress

Winnie Soon
School of Communication and Culture, Aarhus University

wsoon@cc.au.dk

Abstract
Loading images and webpages, waiting for social media feeds
and streaming videos and multimedia contents have become a
mundane activity in contemporary culture. In many situations
nowadays, users encounter a distinctive spinning icon during
the loading, waiting and streaming of data content. A
graphically animated logo called throbber tells users something
is loading-in-progress, but nothing more. This article
investigates the process of data buffering that takes place
behind a running throbber. Through artistic practice, an
experimental project calls The Spinning Wheel of Life explores
the temporal and computational complexity of buffering. The
article draws upon Wolfgang Ernst’s concept of
“microtemporality,” in which microscopic temporality is
expressed through operational micro events. [1]
Microtemporality relates to the nature of signals and
communications, mathematics, digital computation and
dynamic network within these deep internal and operational
structures. [2] Through the lens of microtemporality, this article
offers a new understanding of a throbber icon beyond its
symbolic form and human sensory reception. It opens up the
cultural and computational logics that are constantly rendering
the pervasive and networked conditions of now.

Introduction
Loading images and webpages, waiting for social media
feeds and streaming videos and multimedia contents
have become a mundane activity in contemporary
culture. In particular, this includes network connected
devices from fixed desktop computers to portable tablets
and smart watches, all involving data transmission across
multiple sites—referred to as data streams. In many
situations nowadays, users encounter a distinctive
spinning icon during the loading, waiting and streaming
of data content. A graphically animated logo called
throbber tells users something is loading-in-progress, but
nothing more. Unlike a progress bar, a throbber is
perceived as repeatedly spinning under constant speed.
In contrast to a progress bar which is more linear in
form, a throbber does not indicate any completed or
finished status and progress. Commonly, a progress bar
explains such computer operations, for example,
transferring and copying specific files and directories,
and illustrating installation procedures. Arguably, when a
software application connects to a technological
network, such as a home or mobile Internet network,
things get more complex.

 This article investigates the process of data buffering
that takes place behind a running throbber. In particular,
it examines the temporal complexity of data streams, in

which data processing and code inter-actions are
operated in real-time. The notion of inter-actions mainly
draws references from the notion of "interaction" from
Computer Science and the notion of "intra-actions" from
Philosophy. [3][4][5] The term code inter-actions
highlights the operational process of things happen
within, and across, machines through different technical
substrates, and hence produce agency.

 This article is informed by artistic practice, including
close reading of a throbber and its operational logics of
data buffering, as well as making and coding of a
throbber. These approaches, following the tradition of
artistic research, allow the artist/researcher to think in,
through and with art. [7] Such mode of inquiry questions
the invisibility of computational culture. By focusing,
using and producing a throbber, it suggests a different
engagement and possibility of seeing this cultural icon
and its related background activities in a different way.
This article also draws upon the concept of
“microtemporality” in the work of Wolfgang Ernst, in
which microscopic temporality is expressed through
operational micro events. [1] Microtemporality relates to
the nature of signals and communications, mathematics,
digital computation and dynamic network within deep
internal and operational structures. [2] Ernst’s
microtemporality is also linked to his notion of
discontinuity which is grounded on Michel Foucault’s
The Archaeology of Knowledge. [8] According to
Foucault, his concept of discontinuity offers an
alternative perspective to understand knowledge beyond
its stable form of narration and representation. [9] Both
Foucault and Ernst use the term discontinuity as a means
to examine the gaps, silence and ruptures of things that
go beyond signs or representational discourses. Although
a throbber icon becomes a standard way of
implementation in contemporary software culture, the
micro events that happen behind a throbber indeed react
differently. This complexity of time conception is
explored and exemplified in an experimental and artistic
project calls The Spinning Wheel of Life.

 Rethinking the notion of time beyond users’
perception, this article and the artwork open up the
cultural and computational logics that are constantly
rendering the pervasive and networked conditions of
now.

Proceedings of the 22nd International Symposium on Electronic Art ISEA2016 Hong Kong. 209

A cultural reading of a throbber
With its distinct characteristic of spinning design that
indicates background processing, the throbber icon acts
as an interface between computational processes and
visual communication. One of the earliest uses of the
throbber can be found in the menu bar of a Mosaic web
browser in the early 1990s, developed by National
Center for Supercomputing Applications (NCSA) and
the browser interface was designed by scientist Colleen
Bushell [10][11]. The browser throbber contains a letter
’S’ and a globe that could spin when loading a web page.
This kind of a spinning throbber, with the company
browser’s graphical logo, has also been seen in
subsequent software browsers. While the throbber spins,
it visually indicates actions are in progress. These
actions, from a user point of view, could be interpreted
as the loading of web data or connecting to a website by
a software browser. From a technical perspective, it
involves Internet data transmission and a browser that
renders the inter-actions of code. The spinning behavior
stops when a webpage is finished loading within a
browser. A web browser, according to Tali Garsiel and
Paul Irish, is software able to render and display
requested content, make network calls and requests, and
store data locally. [12] In this respect, the spinning
throbber icon represents complex inter-actions of code
under network conditions. A throbber with its spinning
characteristic, therefore, can be said to be rooted in, and
specific to, Internet culture.

 More recently, the throbber icon is no longer only
attached to software browsers, it also appears on
different web and mobile applications, and social media
platforms in particular. The contemporary throbber
transforms into a spinning wheel1⁠ that consists of lines or
circles that are arranged in radial and circular form,
moving in a clockwise direction. Each individual
element of a wheel 2 ⁠ sequentially fades in and out
repeatedly to create a sense of animated motion (see Fig
1).

Fig 1. Throbber sequences in the form of circles and lines,

1 The use of lines that indicates the progress activity of a
computer can be found in the early operating system of Unix.
[13]
2 Coincidently, the visual design of a throbber is similar to the
design of early wristwatches (with crystal guards) that were
made for soldiers in World War I. Both include the concept of
a wheel in the form of circles or lines of the petal shape. See:
http://www.oobject.com/category/earliest-wrist-watches/

2015, designmodo, web, the image is retrieved from
http://designmodo.com/css3-jquery-loading-animations.

 These spinning wheels appear after a user has
triggered an action, such as swiping a screen with feeds
to requesting updated information. They also appear after
a user has confirmed an online payment, or is waiting for
a transaction to complete. Most commonly, it is seen
when a user cannot watch a video clip loading smoothly
over an Internet connection. As a result, an animated
throbber appears as a spinning wheel on a black colour
background, occupying the whole video screen while the
video is buffering.

 A throbber represents the speed of network traffic that
also seems tied to our emotional states and perception of
time. Emotionally, it can be annoying and frustrating
while one encounters buffering because it involves
interruption. [14][15] Things do not flow smoothly, and
users become impatient in waiting for an unknown time
or watching for something yet to come. As James
Charlton puts it: “It is a gaze that goes beyond the screen
to an event not yet here.” [16] To Charlton, the loading
time of the throbber is wasted and unproductive as it is
often associated with the perception of the slowness of a
network.

 Perhaps, there is a desire in which things would flow
continuously, as something like broadcast television. The
notion of flow was theorized by a media scholar
Raymond Williams in 1974, in which the programming
of content implies continuity, stemming from the
experience of viewing and reception. [17] The
interruption, what Williams calls “natural break,” of the
advertisement on television, is a planned flow as part of
the television production. [18] Most importantly, the
notion of flow is an expected sequence, such as the
number of breaks and the corresponding duration, to
engage with audiences. Therefore, television exhibits a
relatively stable temporality. However, in a networked
medium, the interruption, such as buffering, cannot be
planned as with television insofar it is subjected to its
material conditions at any moment of time.

 The material nature of the network exhibits something
that is unpredictable, unstable and discontinuous, which
is beyond seemingly ‘natural’ breaks, and beyond visible
and apparent interruptions. In the following section, I
will elaborate on what I refer to as ‘discontinuous
microtemporality’ as a way to rethink the notion of flow
and stream in networked environments.

Discontinuity in streams
The network structure of today’s communication
channels and their streams are often understood as
providing a direct connection between users and
services or between two communication partners, even
though there cannot be any direct links on digital
networks. The metaphor of the flow conceals the fact

Part I. Full Papers (peer-reviewed)

210 Proceedings of the 22nd International Symposium on Electronic Art ISEA2016 Hong Kong.

that, technically, what is taking place is quite the
opposite. There is no stream in digital networks. [19]

In a general sense, data is generated under different
circumstances in the network environment, traversing at
various speeds and spaces across platforms and
continents. In the context of data buffering within
computational networks, temporality refers to the
processing and the unfolding of data over time that
generates differences and rhythms. Although there are
numerous scholarly works discuss temporality in relation
to the subjectivity of time, [20] less attention is paid to
the material aspect and the nondiscursive realm of
temporality. This comes close to what Ernst describes as
‘microtemporality,’ focusing on the detailed processes of
computation. Instead of examining obsolete objects,3 as
demonstrated in much media archaeology, the emphasis
is more associated with the nature of signals and
communications, mathematics and computation within
its deep internal and operational processes. [21]

 In today’s networked communication, data is regularly
perceived as a stream, indicating its characteristics of
vast volume, the speed of update and delivery. However,
Florian Sprenger reminds us that the notion of flow and
stream are metaphors. The temporality of the perceived
flow/stream involves imperceivable discrete-time
system, [22] the transmission of data packets, [23]
temporal storage and transfer, [23] and micro-decisions
by numerous protocols. [24] A stream produces
differences and rhythms due to things—calculations,
mathematics and logics—that are executing and running
in real time. The implication is that these operative
processes cannot be seen as planned sequence of flow,
and that there is a temporal dimension to such operative
logics that reconfigure our understanding of temporality
in computational processes.

 As opposed to continuous-time signals in analogue
systems, the digital adopts the model of a discrete-time
system with independent variables in signal processing.
This model means that each discrete state is countable
and measurable with a distinct value, and can be
represented by a sequence of numbers. The signals are
discrete in time (see Fig 2), alluding to the value between
two discrete-time instances is not defined. Therefore, the
‘flow’ of data that we experience through a screen is
discrete in its nature. Within digital signal processing,
the data stream is discontinuous (discrete) regarding its
time signal.

3 For instances, Friedrich Kittler’s analysis of the gramophone
and typewriter in 1999, or Wolfgang Ernst’s analog radio and
phonograph in 2013.

Fig 2. Discrete time signals, 2015, A. Anand, Kumar, Print,
Copyright 2015 by PHI Learning Private Limited.

 In the early design of modern communication
networks, the concept of ‘packet switching’ was
fundamental to understand how data was organized and
flowed. A data stream was chopped into smaller blocks
as ‘packets’ that were then sent a communication
channel in and through different routes, rates, and
sequences, known as packet switching. According to
Paul Baran, one of the inventors of the packet switched
computer network, real-time connections between a
sender (transmitting end) and a user (receiving end) are
an illusion. Instead, the fast enough data rate gives a
sense of real-time connection between a sender and
receiver. [23] Fundamentally, the routing of a data
packet transmits through different nodes and routers.
Although a selected path is based on “adaptive learning
of past traffic,” there are real-time decisions that have to
be made to locate the shortest path due to the dynamic of
network conditions [23]. In other words, data travels “via
highly circuitous paths that could not be determined in
advance”. [23] Data packets are inscribed with a
sequence of numbers and the function of checksum that
made them possible to reformulate a correct sequence
that makes sense of the perceived content. This
assembling process involves the use of a temporary
buffer. Baran explains as follow:

On the transmitting end, the functions include
chopping the data stream into packets, adding
housekeeping information and end-to-end error
control information to the out-going packets. On the
receiving end, each multiplexing station uses
terminating buffers temporarily assigned to each end
addressee to unscramble the order of the arrived
packets, and buffer them so that they come out as an
error-free stream, only slightly but not noticeably
delayed. [23]

 What is interesting here is the barely noticeable delay
time that gives the perception and illusion of a stream. In
this journey of data packet transmission, Sprenger argues
that there are numerous “micro-decisions” that are made
through network protocols. [24] For instances, the
decision of locating “the most efficient path to the
destination,” the speed of data processing and “the
priority of incoming packets.” [25] All these decisions
are made to control how data is distributed. Even though
the time may not seem significant, still there is time lost
along the journey. [26] This journey involves
interruption at different nodes, transmitting and receiving
ends in which data disassembling and assembling occur.

Microtemporality: At the Time when Loading-in-progress. Winnie Soon

Proceedings of the 22nd International Symposium on Electronic Art ISEA2016 Hong Kong. 211

As such, “[t]he stream never flows uninterruptedly.” [25]
This constant interruption constitutes the notion of
microtemporality that includes decision-making
processes, controls and regulations that are programmed
at the level of protocols and are inscribed in the stream.

 Such processes do not only occur at the network level
but also at the memory and storage level which are
highly relevant to code inter-actions that involve both
hardware and software. [27] Data is processed at a
receiver’s end (as input data in the buffer) and is stored
temporary and locally until the data is further processed
by the software application (as output data). The term
buffering describes the process of input and output of the
buffer – the activities of writing and storing, reading and
processing that are happening at the same time but not
acting on the same bit and piece of data. Buffer refers to
the processing of all kinds of data with different “data
transfer rates and/or data processing rates between
sender and receiver.” [27] In other words, the processing
of data consists not only of the transferring part but
rather as Ernst remind us, through “a coupling of storage
and transfer in realtime.” He continues, “[w]hile we see
one part of the video on screen, the next part is already
loaded in the background.” [22]

 Theoretically, Just in Time (JIT) delivery is used in
streaming media, allowing for the playback of partially
received data temporarily stored in the client’s buffer. In
this sense, both the playback of buffer data and receiving
the remaining data can be made simultaneously (and, in
addition to the case of video and audio, this is also
commonly experienced in loading any relatively large
size file such as a PDF or an image within a browser).
Therefore, streaming “is achieved by buffering the
transmitted data before the actual display.” [28] Ideally,
according to Meinel and Sack, “buffer empties itself at
one end just as quickly as it fills up at the other end”. If
there is transmission delay that is within a threshold time
t, it is regarded as unnoticeable in playback. [28]
However, if the delay of the individual segment exceeds
the threshold time t, a throbber will display. A throbber
is seen when loading a big chunk of data, which is
commonly seen on video sites such as Youku or
YouTube, mostly due to the instability or low bandwidth
of a network that causes the delay of data segment arrival
(exceeds the threshold time t).

 Indeed, buffering is highly related to time, inasmuch
as the primary purpose of a buffer “is to reduce time
dependencies of the data and to decouple input/output
from the program execution.” [27] As a result, data can
be consumed (as input) and processed (as output) at a
different rate. Data, in the case of streaming, is actively
and repetitively being stored (write) and removed (read)
in the buffer with different rhythms (see Fig 3),
oscillating between the invisible and visible, and this is
how we can only immanently experience the
microtemporality of buffering.

Fig 3. Principle organization of a playback buffer, 2013,
Christoph Meinel & Harald Sack, Print, Copyright 2013 by
Springer.

 From the operative logic of streaming, we know there
are calculable processes, data transmissions, reading and
writing of the buffer at different rates. The operative
logic is automated, and is built into the infrastructure of
software as code. What has been written in the buffer
will be automatically read and processed. However,
technology does not guarantee that all the data is written
in the buffer.

 Dropped frames (frames of video that are dropped
during playout) are a relatively common experience in
real-time communications and video streaming.
Sometimes the issue of dropped frames is seamless
because it does not create significant quality degradation.
Such visible and invisible dropped frames are caused by
packet loss, the absence of certain parts of data during
data transmission across nodes and routers through the
journey. Time lost, as mentioned above, includes micro-
decisions making as well as interruptions and delays.
Packets are required to queue up and wait for the transfer
while the network is congested. Under streaming
conditions, data is continuously transmitted from a
sender to a receiver across multiple sites. However, the
amount of buffer space is limited at each site which
means the newly arriving packet has no space to the
stored while the stored packet is still queuing for its next
routing. In this situation, “packet loss will occur-either
the arriving packet or one of the already-queued packets
will be dropped.” [30]

 Packet loss does not only limit to streaming
applications but also other kinds of software applications
in contemporary software culture. For real-time
conversational applications and media streaming
platforms, such as Skype and YouTube, the delay time
for each packet is crucial because the transmission
demands have to be perpetual as conversations and live
concerts are unceasing. On the one hand, the absence of
data is central as packet loss is related to the degradation
of quality, and it could immediately impact the visual or
audio quality with jitters or glitches in a live
environment. On the other hand, if data arrives with a
significant delay, the application design at the receiver’s
end is then required to determine if such data will still
make sense in playback, in particular where conversation
and data are continuously played-back as a stream. In
deciding whether the data should be played-back or
ignored, acceptable latency becomes a decision that is
inscribed in the software and platform design. A serious
data loss may even result in the automatic termination of
a connection. More precisely, data packets are not only
transmitted at different rates (speed), but also with the

Part I. Full Papers (peer-reviewed)

212 Proceedings of the 22nd International Symposium on Electronic Art ISEA2016 Hong Kong.

potential to be dropped at any time as absent data. In
addition, absent data might not cause noticeable effects
in digital communication as it is subjected to the amount
of loss and the level of acceptable latency that are
designed into software applications.

 Therefore, not all data is treated equally and has the
right to arrive at the destination and able to take a
perceptible form. The automated micro-decisions and
computational processes, again, reconfigure the
temporality of networks by discarding absent data. The
notion of microtemporality explicates the invisibility of
computational culture by shifting our attention from
what is visible on a screen to invisible micro events that
are running in the background.

The Spinning Wheel of Life
Such reflection of invisibility is made apparent in the
artistic project The Spinning Wheel of Life, emphasizing
the microtemporal dimension of code inter-actions that
are manifested in the throbber. The title of the project is
borrowed from a ‘wait cursor’ in the Macintosh
Operating System X designed by Apple. The wait cursor
is colloquially known as “The Spinning Wheel of
Death,” referring to the malfunction or failure of a
running program or a system that leads to screen freezes.
The name takes on negative connotations, as the
problems are usually difficult to diagnose. My version of
the spinning wheel is designed to reveal the
microtemporal complexity of data transmission and
storage, and takes buffering to be a cultural activity that
is nonhuman-oriented. The project does not involve
human manipulation directly, but rather it processes in
real-time through code inter-actions. The visual outcome
is subjected to the technical conditions of its operation at
a given moment in time.

 The Spinning Wheel of Life consists of a throbber that
animates in different rates. Each ellipse within the
throbber represents a new data packet arrival. The time
for each fading ellipse is adjusted to an optimal level in
which a balance of the visual composition is achieved.
Since packets arrive at multiple time and space, and
sometimes a huge amount of packets arrive at almost the
same time (the time is down to milliseconds), the visual
throbber yields an unusual and uneven spinning wheel—
from having just a few ellipses to a full throbber with all
the ellipses displayed brightly. Each ellipse fades in and
out with different tempo, subject to the network
conditions in real time. The project makes apparent the
underlying notion of discontinuous microtemporality.

 Figures 4-9 below have documented the animated
movements of The Spinning Wheel of Life; it reacts to the
network packets that are generated from running a
YouTube playlist in real-time.

Fig 4-9. The animated visuals of The Spinning Wheel of Life
(2016)

 There are different rates, tempo, pulses, pauses and
rhythms at multiple scales - from the operations of the
CPU to network routers, from the transmissions of
senders to receivers, from the writing to the reading of
buffers, and from continuous streams to discontinuous
packets. The artwork presents an ongoing operative
processing, addressing the microtemporality of its inter-
actions that underpin the networked logic of
contemporary software culture.

 Time is an important element in contemporary
software culture as it governs how a signal is processed,
how data is transmitted and how micro-decisions are
made. As a result, a stream is constantly being
interrupted since the start of data transmission, but not at
the time one encounters a throbber animating on a
screen. The complex process of buffering, as I argue,
exhibits a very particular temporality that sheds light on
an understanding of software culture and how it
processes time.

Conclusion
The notion of discontinuous microtemporality highlights
the temporal dimension of the stream as part of our
contemporary condition. As Peter Osborne remarks,
contemporaneity “is primarily a global or a planetary
fiction,” which suggests a stream is highly capitalized
under these globalized processes that disseminate into

Microtemporality: At the Time when Loading-in-progress. Winnie Soon

Proceedings of the 22nd International Symposium on Electronic Art ISEA2016 Hong Kong. 213

every part of the world. [31] The Spinning Wheel of Life
calls for critical attention to these networked but also
mediated processes, not only at a planetary scale but at
the microtemporal level of operations. In this
contemporary software culture, things are immanently
networked, and data are constantly generated, the notion
of discontinuous microtemporality highlights not only
the differences and rhythms of code inter-actions, but
also the absent and silent of data that is beyond human
sensory reception. The complex process of data
buffering, as I have argued, exhibits a very particular
kind of discontinuous microtemporality. This sheds light
on not only the computational logic behind a throbber,
but also the real-time dynamics of computational
networks in a general sense, and hence the rendering of
the pervasive and networked conditionings of now.

 In other words, the artwork is a reflection of the
perpetual, cultural and social changing conditions. On
the one hand, the existence of a throbber is a by-product
of a commercial application that informs users to wait
for an unknown period of time. On the other hand,
through the development of various services, such as live
streaming, big data analysis, social media platforms, data
predictions and transactional applications, it offers a
critical space to understand how a throbber is being
made operative. A throbber is a cultural phenomenon
that appears in almost every application that requires a
live computational environment. A throbber is not only a
technical or visual object but also entangled with other
cultural and micro processes that render the unknowable
more knowable.

Acknowledgements
This paper was supported by The Center for
Participatory IT. I would like to thank my supervisors for
providing useful feedback and criticism. This paper was
developed through the seminars and conferences on
execution in 2015. I am thankful to the team of Critical
Software Thing, as well as the participants of the
execution conference for their comments on an earlier
version of this paper. Finally, I would like to thanks for 4
anonymous reviewers for their feedback.

References
1. Jussi Parikka, “Archival Media Theory: An Introduction

to Wolfgang Ernst's Media Archaeology,” in Digital
Memory and the Archive. (Minneapolis: University of
Minnesota Press, 2013), 19.

2. Jussi Parikka, “Operative Media Archaeology: Wolfgang
Ernst’s Materialist Media Diagrammatics,” Theory,
Culture & Society 28 (2011): 52-74.

3. Peter Wegen, “Why interaction is more powerful than
algorithms,” Communications of the ACM 40 (1997): 80-
91.

4. Peter Bentley, “The meaning of code,” in Code: The
language of our time, eds. Gerfried Stocker and Christine
Schöpf (Linz: Hatje Cantz, 2003), 33-36.

5. Karen Barad, Meeting the Universe Halfway: Quantum
Physics and the Entanglement of Matter and Meaning.

(Durham: Duke University Press, 2007), 140.
6. Jussi Parikka, “Archival Media Theory: An Introduction

to Wolfgang Ernst's Media Archaeology” in Digital
Memory and the Archive, 8-9.

7. Henk Borgdorff, “The Production of Knowledge in
Artistic Research,” in The Research Companion to
Research in the Arts, eds Michael Biggs & Henrik
Karlsson (Oxon, UK: Routledge), 44.

8. Wolfgang Ernst, “Dis/continuities: Does the Archive
Become Metaphorical in Multi-Media Space?” in New
Media, Old Media: a history and theory reader, ed.
Wendy Hui Kyong Chun (New York, London: Routledge,
2006).

9. Michel Foucault, The Archaeology of Knowledge and the
Discourse on Language (New York: Pantheon Books,
1972), 3.

10. Michael C, Albers, “Auditory cues for browsing, surfing,
and navigating,” Proceedings of the 3rd International
Conference on Auditory Display (ICAD 1996), Palo Alto,
California, (1996), accessed December 10, 2015,
https://smartech.gatech.edu/handle/1853/50793

11. Kevin Roebuck, Virtual Desktops: High-impact Strategies
- What You Need to Know: Definitions, Adoptions, Impact,
Benefits, Maturity, Vendors. (Dayboro: Emereo
Publishing, 2011).

12. Tali Garsiel & Paul Irish, “How Browsers Work: Behind
the scenes of modern web browsers (2011)”, How
Browsers Work website, accessed December 15, 2015,
http://www.html5rocks.com/en/tutorials/internals/howbro
wserswork/

13. Kevin Roebuck, Virtual Desktops: High-impact Strategies
- What You Need to Know: Definitions, Adoptions, Impact,
Benefits, Maturity, Vendors, 349

14. Rick Broida, “Stop Frustrating Pauses in YouTube
Videos”, PCWorld website, accessed December 15, 2015,
http://www.pcworld.com/article/201089/Stop_Frustrating
_Pauses_in_YouTube_Videos.html

15. Brian Stelter, “Debate Web Stream Does Not Flow
Smoothly for All (2011),” New York Times website,
accessed December 15, 2015.
http://thecaucus.blogs.nytimes.com/2011/10/11/debate-
web-stream-does-not-flow-smoothly-for-all/?_r=1

16. James Charlton, “Post Screen Not Displayed,” in Post-
Screen: Device, Medium and Concept, eds. Helena.
Ferreira & Ana. Vicente (Lisbon: CIEBA-FBAUL, 2014),
171.

17. Raymond Williams, Television: Technology and Cultural
Form, (London: Fontana, Collins, 1974), 80-84.

18. Raymond Williams, Television: Technology and Cultural
Form, 90.

19. Florian Sprenger, The Politics of Micro-Decisions:
Edward Snowden, Net Neutrality, and the Architectures of
the Internet, (Lüneburg: meson press, 2015), 88-89.

20. David M Berry, “The Social Epistemologies of Software,”
Social Epistemology 26 (3-4), (2012): 379-398.

21. Wolfgang Ernst, “Experimenting with Media Temporality:
Pythagoras, Hertz, Turing,” in Digital Memory and the
Archive, ed. Jussi Parikki (Minneapolis: University of
Minnesota Press, 2013), 186-189.

22. Wolfgang Ernst, “Dis/continuities: Does the Archive
Become Metaphorical in Multi-Media Space?” in New
Media, Old Media: a history and theory reader, ed. Wendy
Hui Kyong Chun, 108.

23. Paul Baran, “The beginnings of packet switching: Some
underlying concepts,” IEEE Communications Magazine
40(7), (2002): 42-48.

Part I. Full Papers (peer-reviewed)

214 Proceedings of the 22nd International Symposium on Electronic Art ISEA2016 Hong Kong.

24. Florian Sprenger, The Politics of Micro-Decisions:
Edward Snowden, Net Neutrality, and the Architectures of
the Internet, 73-102.

25. Florian Sprenger, The Politics of Micro-Decisions:
Edward Snowden, Net Neutrality, and the Architectures of
the Internet, 19.

26. Florian Sprenger, The Politics of Micro-Decisions:
Edward Snowden, Net Neutrality, and the Architectures of
the Internet, 75.

27. Philip A Laplante, Dictionary of Computer Science,
Engineering and Technology, (CRC Press, 2000), 55.

28. Christoph Meinel & Harald Sack, Internetworking:
Technological Foundations and Applications, (Berlin:
Springer, 2013), 783.

29. Christoph Meinel & Harald Sack, Internetworking:
Technological Foundations and Applications, 780.

30. Kurose James F & Keith W. Ross, Computer Networking:
A Top-Down Approach. (Pearson Education, 2013).

31. Peter Osborne, Anywhere or Not at All: Philosophy of
Contemporary Art. (London: Verso, 2013), 26.

Microtemporality: At the Time when Loading-in-progress. Winnie Soon

Proceedings of the 22nd International Symposium on Electronic Art ISEA2016 Hong Kong. 215

