Computer Music Languages . . .

and the Real World

The limits of my language are the limits of my world.

—Ludwig Wittgenstein

The language of the Canadian Eskimos has more than 10
different words for ‘frozen water’. There is one for ice that
melted and froze again, one for ice that is extremely cold
and at least eight others. If one wants to have a conversation
about frozen water in a Central African dialect, the conver-
sation will be much more difficult. There are no appropriate
words.

Yet the matter is even worse when one tries to communi-
cate musical ideas on a digital computer. Such attempts have
existed since 1957 and are known as computer music lan-
guages. A short survey should point out some of the prob-
lems in that field. Special notice will be taken of the state of
the art of general-purpose programming languages at that
time,

COMPUTER MUSIC LANGUAGES

MUSIC I (Mathews, 1957) made it possible to generate
sounds of a triangle waveform on a computer. The tones
could be controlled in pitch, amplitude and duration. As
there were no means of defining structures on a higher level,
the way of ‘programming’ a musical piece resembled the
way programming in general was done at that time. FOR-
TRAN was only a year old; therefore, most of the programs
were still written on the assembler level. For that reason, the
early programs for computer music contain all the ugly in-
gredients of 1950s programming technique, like GOTOs,
mnemonics, numeric labels, and so on.

MUSIC III (Mathews, 1960) presented the totally new
concept of unit generators. The program was a simulation
of electronic modules, like the ones of the Moog synthesizer,
which appeared at almost the same time. There are also par-
allels to programming techniques that became known at
that time. Modular programming tries to build up a pro-
gram structure from smaller, generalized units that fit into
various applications.

MUSIC IV (Mathews, 1963) was programmed because
the company changed the computer. It would be hard to
find musical reason behind the redesign of the language.
Mathews himself admits: “MUSIC IV was simply a response
to a change in the language and the computer. . .. Soin es-
sence MUSIC IV was musically no more powerful than
MUSIC III” [1]. There are many cases like that, where tech-
nical necessity rather than musical need controlled the

Mathias Fuchs, Elsa Beskowsgata 21, 512666, Higersten, Sweden.
Received 25 April 1988.

©1988ISAST
Pergamon Press pic. Printed in Great Britain.
0024-094%/88 $3.00+0.00

Mathias Fuchs

development of music languages. Gottfried Michael Koenig,
another pioneer of formal music languages, was forced to
rewrite Project 1 from FORTRAN to ALGOL when he
moved from Cologne to the Netherlands.

Growing discontent with the working conditions at a big
university computer center prompted a number of com-
posers to design portable systems in the beginning of the
1970s. Ed Kobrin’s HYBRID system for voltage-controlled
oscillators, amplifiers and filters was such a system running
on a PDP 11/10. Others were the EMS1 system or HYBRID
0 for Moog modules and a CA minicomputer. In order to
perform in real time, these systems ran very fast command
interpreters to service the musician’s instructions and the
hardware interfaces. The only input source was, in many
cases, the alphanumeric keyboard. Therefore, one of the
main design criteria was an extremely abbreviated com-
mand language. For example, a line to set the oscillator 01
to the top tenth of the available frequency range was

01;8~9;12;K;R <return>

One does not need to point out that such a cryptic code is
only transparent to the experienced user.

The intransparency and the lack of self-explanatory
strength led Xenakis to the design of the machine UPIC.
Xenakis can claim to have one of the few computer systems
whereby an absolute beginner immediately can start to
make music in an intuitive way. This goal is accomplished
through graphic programming. Instead of defining func-
tions by numbers or mathematical relations, UPIC reads in
lines that are drawn onto a graphic table and controls a soft-
ware synthesizer according to the line’s course. As soon as
the line goes up, the pitch (or amplitude, etc.) goes up.

The problem with a complex system like UPIC is that it
can be run only on a specific machine—in this case, the one
at CEMAMu in Paris. Many composers would never be able
to go there and experiment with the system for a reasonable
time. These considerations were a starting point for the CDP
(Composer’s Desktop Project) in Great Britain, where an in-
expensive system using the generally available Atari 1040 was
built. The software is an integrated package of sound pro-
cessing utilities, called GROUCHO. The link between the
programs is a standardized file format. As all the programs
use this format, it is easy to let the system grow. Any one of
the project’s members can add new software at any time.
The design idea of an open systern and some features of the
user interface have their parallels in modern operating sys-
tems and in data exchange and communication programs.
One could see this design as opposed to the totally defined
languages, like PL/1. The open systems have their main
domain in the home computer and PC field. Systems that
resemble GROUCHO in some respects are the Californian

LEONARDO, Electronic Art Supplemental Issue, pp- 39-42, 1988 39

The MIT Press is collaborating with JSTOR to digitize, preserve, and extend access to
Leonardo. Supplemental Issue. ®

www.jstor.org

40

.
Table 1. Music Languages

Music Language Author Year of Implementation User Representation of
Implementation Language Interface/Hardware Objects
MUSIC | Max Mathews 1957 Assembler punched cards/ big numbers
mainframe
MUSIC Il Max Mathews 1958
MUSIC 1t Max Mathews 1960 unit generators,
simulation of
electronic circuits
MUSIC v Max Mathews 1963 FORTRAN
MUSIC v Max Mathews 1968
Project 1 Gottfried M. 1964 FORTRAN command lines numbers, strictly
Koenig rewritten in formatted (e.g.
ALGOL 4.783), lists
Project 2 Gottfried M. 1965 ALGOL 60 subprogram numbers, lists
Koenig calls/multiuser
system
SCORE Leland Smith 1972
GROOVE Max Mathews, 1970 graphic input
Moore
HYBRID vV Edward Kobrin 1976 PDP Assembler command lines/ symbols for synth.
mini comp. and units
piano keyboard
UPIC Iannis Xenakis, 1970s dialogue via graphs
CEMAMu graphics tablet,
CRT, tableau des
fonctions
CHANT Xavier Rodet, 1980 FORTRAN parameters in functions
Gerald Bennett, dialogue
Conrad
Cummings, Yves
Potard
BADA Michael Hinton, 1970s FORTRAN
EMS Stockholm
CARL Stanford
GROUCHO Composer’s 1986 C program
Desktop Project, calls/personal
A. Bentley and computer
others

CARL (which actually served as a
model for GROUCHO) and the Stock-
holm BADA package (see Table 1).

PROPOSAL FOR
CLASSIFICATION

Much of the systematic work on com-
puter music {2] divides the object of
investigation into two classes:
(1) sound generating programs and
(ii) programs for score generation.
The first ones are often called in-
strument definitions. Mathews argues
that this hierarchy (in his case the cate-
gories are instrument, score, and per-
formance or interpretation) emerges
naturally from our concept of conven-
tional music. For two reasons I do not
want to keep this idea.

First, electronic music has ever at-
tempted to cross the borders between
the realm of ‘sound’ and ‘composi-
torial structure’ and has understood
them as inseparable from each other.
How can a systematic theory then hold
up this difference? Second, since mu-
sic languages contain certain features
of the general purpose languages that
are available at the time of their con-
ception, I suggest a classification that
takes into account the features of the
‘unmusical’ computer languages.

CLASSIFICATION FOR
PROGRAMMING
LANGUAGES

There are at least four major families
of programming languages, which dif-

Fuchs, Computer Music Languages . . . and the Real World

fer in how they approach a program-
ming problem (see Table 2).

(i) The first one could be called the
systematic approach. ALGOL, Pascal,
C and ADA belong to this family.
These languages are characterized by
total regulation by means of syntactic
and semantic rules for any statement
inside the language. Easy things are
often complicated to express. Classes
of objects are not permeable.

(ii) The second family was born out
of the frustration caused by the first.
BASIC was such a language, whereby
simple tasks could be achieved in an
easy way. APL is another example that
shows how efficiently and briefly one
can code as long as the language is
flexible enough. One main aim in the
design of these languages is efficiency.

(iii) The third family is fine for peo-
ple who cannot read or write but still

Table 2. General-Purpose Programming Languages

General- First Author(s) Class
Purpose Published
Programming
Language
FORTRAN 1956 (i) systematic,
algorithmic

ALGOL 60 1960 Backus et al.
PASCAL 1971 Nickolaus Wirth, TH

Zurich
C
ADA 1979 Jean Ichbiah,

Honeywell Buli,

Department of Defense
BASIC (ii) efficient
APL 1960s Kenneth E. Iverson,

IBM
LOGO (iii) graphic
SMALLTALK early 1970s Alan Kay, Xerox Palo

Alto
Framework 1984 Ashton Tate (iv) integrated,

open

Framework Il 1986
with FRED
programming
language
OpenAccess
1-2-3 Lotus Development

Corporation
Symphony 1985
Table 3. Music Languages
Music First Author Class
Language Published
MUSIC |, I, Iit, 1957-1968 M. Mathews (1) systematic,
v,V algorithmic
Project 1, 2 1964, 1965 G. M. Koenig
HYBRID IV 1976 E. Kobrin (i1) efficient
UPIC 1970s 1. Xenakis (iii) graphic
GROUCHO 1986 CDP (iv) integrated

want to be programmers. It is the
family of graphic languages. LOGO is
such a language, but the ideology
reaches out into many modern oper-
ating systems, especially in the per-
sonal computer sector.

(iv) It was not long ago that the PC
market was conquered by a type of
software that became known as inte-
grated packages. These programs,
though not general-purpose program-

ming languages in the original mean-
ing of the word, come close to them
when one regards standard applica-
tions for everyday usage. Programs
like Framework, OpenAccess, Lotus
Symphony and others offer many con-
venient functions to make program-
ming easier. Usually, they contain
some graphic utilities, a database,
spreadsheet functions, a word proces-
sor and communication programs. A

characteristic feature is their open de-
sign, which allows linkage to all kinds
of programs. They are less hermetic,
less concise, easier to use and easier to
learn than the systematic high-level
programming languages.

The classification proposed here re-
flects the way of handling the objects
of the language. There are, of course,
languages that fit into more than one
group. SMALLTALK is one; though
the graphic facilities are an important
part of the language, one could place
it as well in class (i).

CLASSIFICATION FOR
MUSIC LANGUAGES

If one applies the same classification
scheme to computer music languages,
one notices the degree to which de-
sign criteria for musical languages rely
on design trends in the commercial
field (see Table 3). It is certainly not
by chance that the birth of the most in-
teresting music packages, CARL and
GROUCHO (Stanford and York, re-
spectively), coincides with the birth of
the Symphony/Framework class.

CONCLUSIONS

Language is a virus.

—William S. Burroughs

One of the myths computer musicians
are living with is the idea that they can
use the computer as a neutral tool that
serves them in realizing their composi-
tional ideas without influencing them.
The opposite is true.

Musical output often seems closer
to the computer system used than to
the composer’sideas (if such were pre-
sent). Asa consequence, record covers
and concert reviews are more often
based on the technological back-
ground of the pieces than on aesthet-
ics. The tool is not a neutral means of
achieving an abstract aim; rather it
should be regarded as an important
factor in the process of musical crea-
tivity. This is no shame, neither is it
new to the musical universe. It makes
a difference whether one writes for
trombone or for guitar. The impact of
a computer music language on the
process of composing therefore
should be seen in the context of a
given state of the art in programming
techniques. Computer music lan-
guages have to do with sounds and
with musical structures. But they also

Fuchs, Computer Music Languages . . . and the Real World

41

42

have to do with which software pro-
ducts are commercially available.

The German composer Herbert
Eimert was angry once when some-
body associated electronic music with
electricity. He said, “Electronic music
has more in common with serialism,
than with the electric vacuum
cleaner”.

Apart from the fact that the concept
of the vacuum cleaner seems to have a
more lasting life than that of serialism,

we should not hesitate to observe the
importance of the hardware behind
artistic creation.

References and Notes
1. Computer Music Journal4, No. 4 (1978).

2. For further information the reader is directed
to the following works: William Buxton, Design
Issues in the Foundation of a Computer Based Tool for
Music Composition (Ontario, 1978); Lejaren Hiller,
Computermusik und Informationstheorie (Mainz,
1963); Michael Longton, Priorities in the Design of
a Microprocessor-Based Music Program (Victoria,

Fuchs, Computer Music Languages . . . and the Real World

1981); Max Mathews, The Technology of Computer
Music (Cambridge, 1969).

Further Reading

Ed Kobrin, Computerin Performance (Berlin, 1973).

Gottfried Michael Koenig, Computer Composi-
tion (Sonological Reports, Utrecht).

Barry Truax, POD 4,5 and 6 (Sonological Reports,
Utrecht).

In addition, the reader should consult the diverse
manuals and printouts of SCORE, BADA, UPIC,
CHANT, Hybrid 0.

