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A cell complex is defined in the analysis of the topological invariants of tiling spaces. In some cases the 
complex contains collared tiles. The representation of the corresponding branched surface can be done 
by assigning colors to the collared tiles. This allows to distinguish tiles  with the same shape but different 
edge identifications. 

 

Fig.1 Level-4 supertiles for the octagonal tiling 

 
Fig 2. A fragment of “Branched Manifold" 



 

 

Fig 3. “Nueve y 220-A” is based on a nodal surface with degree nine and cyclic symmetry. 

1.-Introduction 

 Artists, scientists and mathematicians share instinctive feelings about order and disorder. One of the 
fields where this is apparent is the mathematical theory of long range aperiodic order, because of its im-
plications in the arts. 

Aperiodic tilings are geometric objects lying somewhere between periodicity and randomness. In the 
1960´s Wang and Berger introduced aperiodic sets of tiles in the treatment of certain problems in logic. 
The question was whether or not it is possible to determine algorithmically if given a set of tiles they tile 
the plane. The cardinal of the tile sets was very high and examples with few prototiles were constructed 
later by Robinson, Penrose, Ammann, and others. Since the discovery of quasicrystals in the 1980´s, the 
generation of ideal quasiperiodic structures has been a problem studied mainly by mathematicians and 
physicists.  

Recently it has been suggested that aperiodic order already was present in the medieval islamic archi-
tecture. [8] Periodic and non-periodic girih (geometric star-and-polygon, or strapwork) patterns were on 
the basis of the designs. In particular by using certain substitutions in five girih tiles, a pattern on the 
Darb-i Imam shrine (Isfahan, Iran, 1453 C.E.) can be mapped into a decagonal quasicrystalline Penrose 
pattern with few defects. The girih tiles have the shape of the decagon, pentagon, hexagon, bowtie and 
rhombus. They can be seen in one of the panels of the Topkapi scroll (Topkapi Palace Museum in Istan-
bul), drafted by Islamic designers to transmit architectural procedures. The authors in [8] also claim that 
a selfsimilarity transformation, or subdivision of large girih tiles into smaller ones, was known by islamic 
architects. 

In the 20th century, there are also many examples of non-periodic order in the arts. Xenakis, while 
working as an engineer in Le Corbusier’s office, was responsible for the design of the undulating glass 
panels at the facade of the monastery of St Marie de La Tourette. Four one-dimensional tiles in golden 
proportion and their combinatorial distributions were the constructive units. [10] At the same epoch he 
employed Fibonacci series to organize the temporal sections in Metastasis, a work based also on ruled 
surfaces in the form of continuous massive glissando structures. The idea of transforming graphics into 
sound was elaborated by Xenakis at the UPIC system in the late 1970´s. 
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Aperiodic order is present also in the design of more recent architecture. Penrose tilings, with tiles ap-
pearing in ten different orientations, are used in the Royal Institute of Technology RMIT and the pin-
wheel tiling, with tiles appearing in all rotation angles, in the Federation Square buildings, both in Mel-
bourne, Australia. Obviously in many cases, the use of patterns with interesting mathematical properties 
does not necessarily give results aesthetically appealing. 

From a mathematical point of view, the appropriate space in pattern analysis is not the original surface 
but a folded version of it which is called the orbifold. [1] The set of points of the same kind is called the 
orbit of the symmetry group and the folding takes all the points of the same kind to a single point. Re-
peating patterns can be folded into an orbifold on some surface. The description of manifolds in two di-
mensions is often done by identifying some edges of simpler surfaces. Deterministic and random aperi-
odic tilings in two and three-dimensional manifolds have been presented in the past few years (see [5] 
and references therein). 

There are several methods for constructing aperiodic tilings: cut-and-project methods, substitutions and 
matching rules. Substitution tilings grow by iteration of a set of inflation rules applied to a given set of 
prototiles. A tiling space can be seen as the set of tilings that locally look like translates of a fixed tiling. 
For the analysis of the cohomology of tiling spaces a type of cell complex is defined. [9] For each particu-
lar case the complex contains a copy of every kind of tile that is allowed, with some edges identified, 
and the result is a branched surface that can not be represented properly in three dimensions. A way to 
get an idea about it is to generate a pattern where the basic polygons with the same shape, color and 
orientation represent the same tile in the complex. [7] The topological interpretation is that if some-
where in the pattern a tile shares an edge with another tile, then those two edges are identified. The 
goal in the geometric representation is to visualize in some way the space unfolded without need of sup-
plementary dimensions. 

In the visual and sound arts, this type of constructions have potential interest as a system of reference in 
constrictive preforming for channeling the expressive energies.  

2.-A branched surface associated to an octagonal tiling space. 

In a substitution tiling the pattern obtained after applying n times the inflation rules to a given prototile 
is called a level-n supertile. A substitution is said to force the border if there is a positive integer n such 
that any two level-n supertiles of the same type have the same pattern of neighboring tiles. Tiles labeled 
by the pattern of their neighbors are called collared tiles. When the substitution does not force the bor-
der, collared tiles can be used for the study of a type of topological invariants known as Cech cohomol-
ogy groups. [9,7] In what follows I discuss how the procedure is applied to one of the octagonal tilings 
introduced in Escudero. [3] The study of its cohomology motivates the generation of colored aperiodic 
tessellations which represent branched surfaces. [6] In contrast to other well-known octagonal exam-
ples with the silver mean as scaling factor, like the Ammann-Benker patterns, this substitution does not 
force the border. 

A vertex configuration is a set of tiles sharing a vertex. The first step in the construction consists in  ana-
lyzing the dynamics  of the vertex configurations. The tiling has the property of finite local complexity, 
which means that for some positive real number R, the tiling contains, up to congruence, only finitely 
many local patches of diameter less than R. Also it is uniquelly ergodic, namely, it has well defined patch 
frequencies. In general after n inflation steps all the vertex configurations are transformed into a finite 



subset. In this case it is formed by just two vertex configurations. This is the set of vertices taken to form 
the cell complex. 

The tilings with eight-fold symmetry in [3] have four triangular prototiles represented by the letters 
A,B,C,D. Their edge sets are: A(a,b,b), B(g,d,e), D(g,b,b), E(b,b,z), wherea,b,g,d,e,z represent the edges 
having lengths 2c1,1, 2c2, 2c1c2, 2c2c3, 2c3, respectively, with ck =cos(k pi / 8). 

Iteration of the inflation rules applied to a given prototile shows that there are, up to mirror reflection, 
forty-one vertex configurations. After four inflation steps all of them are transformed into just two, that 
we label 1 and 2. This can be seen in Fig.1, where the superposition of two patterns separated by four 
inflation steps is shown.   The vertices transform into themselves under the application of the inflation 
rules: 1->1, 2->2. In Figs.1 and 2 we can see both: the vertex 1 has star shape with sixteen  A-type pro-
totiles (blue), and the vertex 2 has ten A-type (eight of them yellow-green) and two of type D (green). 

The edges and tiles appear in eight different orientations.  By analyzing level-4 supertiles, we get the 
sets of possible collared tiles and edges. Having in mind the different edges and vertices we can con-
struct a cell complex which contains 25 collared prototiles, up to mirror reflection and orientation. In 
order to distinguish the prototiles with the same shape we assign them colors. More than one hundred 
colored vertices from the forty-one initial vertex configurations appear. A fragment of the pattern repre-
senting the corresponding branched surface can be seen in Fig.2. 

The collared pattern can be described in terms of formal language theory, more precisely, with the help 
of Lindenmayer systems. [3] The words characterize the tilings in a unique way. The word production 
rules are defined with the intention to describe finite patterns by word sequences as a kind of symbolic 
dynamical system, which is very "natural" in one dimensional substitutions like the Fibonacci sequence. 
In one dimension if two letters appear consecutively then the corresponding tiles appear together in the 
geometric representation. In order to generalize this to two and higher dimensions one has to introduce 
a bracket structure and the letters in the alphabet represent oriented prototiles. The allowed words in 
the formal language then are of the type ((ABC)(FA)(DE)). The geometric interpretation is as follows: A 
and B appear together in the word and there is only one way to "glue" the corresponding oriented tiles 
edge-to-edge. The same applies to the supertiles represented by (ABC) and (FA) or to (((word1))) with 
(((word2))) ... if they appear consecutively in a given word (notice that C and F will not appear, in gen-
eral,  adjacent in the geometric structure). A bracket belonging to the alphabet has to be interpreted not 
as a tile, but as a way to group tiles to get supertiles. The use of brackets mimics the hierarchical struc-
ture and it seems that they are not avoidable (without losing the result that if two letters representing 
tiles appear consecutively then the corresponding tiles can be glued in only one way). The model has the 
advantage that can be applied to higher dimensions as well.  

3. Concluding remarks 

In the construction of the cell complex another point of interest is to analyze the ways color can interact 
with the symmetries of the pattern. For a discussion of the mathematics of color symmetry see. [1] Here 
there is a freedom in the color selection and the final results can be very different, due to the emphasis 
in distinct geometric substructures.  When we take into account the set of the patterns obtained by all 
the possible color selections we are approaching to a metaphor of the concept of rhizome which is made 
of plateaus. Each pattern would be an image of a plateau or “continuous, self-vibrating region of intensi-
ties whose development avoids any orientation toward a culmination point or external end.” [2] Also 



each pattern is related to any other pattern and can be generated starting in a limitless number of ways. 
There is a principle of connection and heterogeneity in the sense that any local geometric configuration 
appears in some other place, in fact, in infinite places when the plane filling structure is considered. The 
pattern is made of lines and occupy all the dimension of a “plane of consistency” following a principle of 
multiplicity. Each plateau here would have a strong principal unity of root-tree type because its genera-
tion is the result of successive iteration of a large set of inflation or substitution rules in a Lindenmayer 
system. However the whole set of colored patterns does not have this arborescent characteristic. 

The basic symmetries are continuously broken and have to be perceived in a dynamical way as would be 
the case if temporal phenomena were embedded. There are also various levels of perception depending 
on the distance of observation. The image can then be seen as a kind of nomad place. While we contem-
plate it we travel through a space in constant change, where local configurations of just four shapes, like 
a ritornello, always reappear but in different surroundings. This property is preserved when we extend 
the pattern to infinity, but we can have a sensation of it by observing a finite fragment. 

The simplicial arrangements of lines given in [5] are the basis for the derivation of non-periodic planar 
tilings with any symmetry. The analysis of their associated topological invariants provides a rich source 
of branched surfaces generation. In addition, certain families of simple subarrangements can be used for 
the construction of algebraic surfaces with many nodal singularities that can be represented in 3D. In 
Fig.3 it is shown a work based on a surface corresponding to a polynomial of degree nine obtained from 
one of the arrangements with 18 lines in [5] and containing the seven prototiles of a series of tilings in-
troduced by the author in 1998. It has cyclic symmetry and 220 real nodes.   

In the time domain, substitution tilings and their appearance in the field of astronomy have been on the 
basis of the formal procedures in several instrumental, vocal and computer generated works, where 
time harmonizations and sound synthesis derived from spectra of aperiodic ordered sequences play a 
central role. [4] One of the pieces where this techniques are present is Yod, for 6 percussionists and 
computer, performed by the austrian group Studio Percussion Graz at the 2005 ISCM World Music Days 
in Zagreb. On the other hand certain identifications leading to quotient spaces and orbifolds have been 
commonplace in musical practice. A recent work, where this and other concepts of combinatorial topol-
ogy are explored as part of the precompositional materials is Los límites móviles del agua for two pianos, 
which the Ensemble Surplus plans to perform in Freiburg, Germany. 

Both the visual and sound works must be regarded as projections from the same rhizomatic space. They 
are just manifestations of some of its infinite plateaus. 
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