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This paper explores some control strategies using synaptic plasticity in the simulation of an artificial net-
work of spiking neurons in the Neurogranular sampler -a musical instrument which triggers grains of 
sampled sound when the neurons 'fire.' 

 
 

A raster plot showing the spiking behaviour of simulation of a network of 64 neurons modelled using the 

Izhikevich Model (2004) copyright Kevin McCracken. 

Introduction 

The Neurogranular Sampler is a software musical instrument which triggers grains of live sampled audio 
when any one of a network of artificial spiking neurons ‘fires’ [10,11]. The level of synchronisation in dis-
tributed systems is often controlled by the strength of interaction between the individual elements. If 
the elements are neurons in small brain circuits, the characteristic event is the ‘firing time’ of a particu-
lar neuron. In this paper we propose how we might ‘neuroengineer’ the collective firing behaviour of 
small networks of artificial neurons and therefore also engineer the sound of the Neurogranular sampler 
by exploiting a counter-intuitive property of Neuronal Plasticity. 

Plasticity 

The term ‘plasticity’ in the neurosciences refers to the ability of neurons or nerve cells to adapt their 
connectivity according to the electrical activity of the other cells in the network. The ability for cells to 
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make new physical synaptic connections via axonal growth and synaptic growth and decay (synaptogen-
esis) is known as structural plasticity. [1] In this scenario, the axons (long tubular structures) from neu-
rons grow towards other active cells through an induced chemical gradient, a process which has a 
timescale of hours to days. A different category of plasticity is known as ‘Spike Timing Dependent Plas-
ticity’ (STDP) and refers to the millisecond strengthening and weakening of connections between neu-
rons as a result of the transmission and reception of causal spike signals between neurons. [2] 

This ‘causal’ effect was initially proposed by Donald Hebb and is known generally in the literature as 
‘Hebbian Learning.’ [3] Essentially, the idea is that connections between neurons become post-synapti-
cally strengthened (i.e in the direction of the motion of the spike signal) if the pre-synaptic neuron fires 
before the post-synaptic neuron. In the Spike Timing Dependent Plasticity scenario, this has been re-
fined such that the change in the strength of connections is dependent upon the relative timings of pre-
synaptic inputs and post-synaptic spikes. [4] 

This continuous strengthening and weakening of neuronal connections resulting from the timing of neu-
ronal stimulation and the relative timing of the resultant spiking behaviour coupled with the effects of 
the differing transit times of spike signals according to axonal topologies, has led to the idea of ‘Poly-
chronisation’ (not at the same time, but in clusters). This term put forward by Izhikevich and others de-
scribes the formation of groups of neurons which fire according to particular sensual and cortical inputs. 
[5] A neuron can be a member of any number of such groups, meaning that it is not simply the number 
of neurons which is involved in neuronal processing, but the combinatorial number of possible polychro-
nous groups, which in the human brain is a number larger than the total number of elementary particles 
in the Universe. 

The idea that patterns and sequences of neuronal firing might be associated with particular sensory in-
puts has been around for a long time (see for example [6]), but it has only been relatively recently that 
this has begun to be understood at the level of the micro-dynamics of networks of cells. At this dynami-
cal level, the interplay between model parameters associated with neuronal topologies, spike transit 
times (often called ‘delays’ in the literature), sensory input, synaptic plasticity and global ‘noisy’ inputs 
crucially affect the robustness and formation of polychronous groups and the associated spike timings. 

These models of small brain circuits provide us with a very rich dynamical palette with which to experi-
ment on the controlling of sound, by using the ‘spike’ signal of an individual neuron to trigger sonic 
events. Typically, in neuro-technological or neuro-engineering contexts, the spiking output of a network 
of artificial spiking neurons goes through an ‘encoding process’ and is sent to a ‘motor’ control, such as 
those which might control the movements of a robot, for example. [7] One example of this encoding 
process, is called ‘rate coding’ in which the frequency of the spikes generated in the output of the net-
work is interpreted and used as a control parameter, the resulting behaviour from which is fed back to 
the network. [8] In our work, directed towards sonic control, the spiking output is the motor output, and 
in a sense the artificial neurons in our system have triple sensory, cortical and motor character. [9]  

The Neurogranular Sampler 

In the Neurogranular Sampler, [10] the spike signal from any artificial neuron from a number of cells 
specified by the user triggers a single ‘grain’ of sound, either from a ‘live’ microphone, or a pre-recorded 
sound file. Typically, these grains can be between 20 milliseconds and one second in duration. We can 
choose different kinds of neurons, which exhibit different kinds of spiking behaviour (Regular Spiking or 



Bursting, for example) and choose either a homogenous group of neurons or a heterogeneous group (a 
selection of different types). If the group of neurons is chosen to be homogeneous and of ‘Regular Spik-
ing’ variety, we find that the network of spiking neurons rapidly enters a dynamical state in which the 
neurons fire together –almost in synchrony (see Fig 1). In the diagram Fig 1, the firing activity in a simu-
lated network of 64 neurons (labelled on the ‘Neuron Index’ axis) is shown over a period of 2000 mil-
liseconds, or two seconds. A dot on the diagram, or ‘Raster Plot’ as it is known in the neuroscience liter-
ature, indicates a firing ‘event’ from that particular neuron. Vertical lines on this diagram indicate syn-
chronous firing behavious meaning that the instrument will exhibit pulse-like behaviour, the frequency 
of which can be controlled by a ‘stretching’ or compression of the audio signal. We can move away from 
this synchronous dynamical state in several ways; one way is to introduce heterogeneity into the sys-
tem, i.e by introducing different kinds of artificial neurons. This acts as a kind of structural disorder, 
making the synchronous state impossible. Perhaps surprisingly, another way of moving away from the 
synchronous state is to exploit a recently discovered property of synaptic plasticity in small brain circuits 
by Lubenov and Siappas. [11] 

Controlling Synchrony 

Lubenov and Siappas showed that if the neurons in a network of artificial regular spiking Izhikevich neu-
rons are all initially in a synchronous regular spiking state, the introduction of Hebbian Spike Timing De-
pendent Plasticity into the model network rapidly takes the network into a very uncorrelated state, in 
which the spiking patterns are almost indistinguishable from a random pattern (lubenov ref). As the 
neurons’ firing times are already initially synchronised, the adaptation of relative spike times due to the 
changing of the connection strengths introduced by the plasticity algorithm can only have the effect of 
taking the spikes out of synchrony! The network subsequently gradually re-aligns itself temporally and 
self-organises to a state at the ‘border between randomness and synchrony.’ [11] 

We can exploit this in our Neurogranular sampler instrument –in this way synaptic plasticity is being 
used as a control mechanism to ‘de-synchronize’ the network of neurons. It is possible to use an Anti-
Hebbian algorithm [11] in order to re-establish the initial regular spiking synchronized state and we can 
follow the correlation in the network spiking behaviour using an ‘order parameter’ which is a function 
and a phrase borrowed from condensed matter physics. 
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