Preserving a Hardware-Dependent Digital Artwork: Investigating Disk

Imaging and Emulation Strategies

David Cirella, Claire Fox, Ethan Gates, Madeline “made” Smith
Yale University Library; The Museum of Modern Art
New Haven, USA; New York, USA
david.cirella@yale.edu; claire. fox@yale.edu; ethan.gates@yale.edu; madeline smith@moma.org

Abstract

This paper summarizes the efforts and findings of a
collaborative case study undertaken by a team of digital
preservation and conservation staff to preserve legacy Apple
hardware included as part of an accessioned artwork Yale
University Art Gallery. Intended to test the capabilities of
the EaaSI (Emulation-as-a-Service Infrastructure)
framework for assessment and exhibition of digital art, a
number of specific technical and logistic hurdles in pursuing
emulation raised challenges for long-term preservation
workflows involving unique hardware.

Keywords

Emulation, disk imaging, software preservation, hardware
preservation, animation, media arts preservation, EaaSI

Introduction

In the summer of 2021, digital preservation staff from a
Yale University Library (YUL) and a conservator from the
Yale University Art Gallery (YUAG) selected Tree Turbine
(2007), an artwork by Joseph Smolinski, from the gallery's
collections as a case study for artwork assessment and
access via emulation technology in a museum context. The
artwork, an animated short video intended for exhibition,
included mid-2000s era-specific hardware components and
software applications, both of which required long-term
preservation actions and planning in order to make future
exhibition feasible.

Emulation, a technology tool and practice that has been
used in preservation and conservation contexts for years, is
still a strategy that is considered emerging or experimental
in many preservation and conservation departments across
cultural heritage institutions. In “The Australian Emulation
Network: Accessing Born Digital Cultural Collections”,
presented at the Second Summit on New Media Art
Archiving, Melanie Swalwell described growing
community efforts to take advantage of emulation’s
potential by bringing together a group of practitioners and
collecting organizations, all using the same
remotely-accessible emulation platform, EaaSI
(Emulation-as-a-Service Infrastructure). [1] This paper

builds on those efforts by focusing on a case study to
practically implement the same collaborative, web-based
emulation framework described by that previous paper in
the context of assessing and preserving a particular piece of
digital artwork. The selected case study was an opportunity
to test real-world implementation of emulation and the
EaaSI platform at Yale - the host organization for a
U.S.-based network of academic and museum partners
(currently funded by the Mellon and Sloan Foundations)
equivalent to the “AusEaaSI” group. [2] The collaborators
on the Tree Turbine project anticipated the need to be
adaptive in their work, documenting their processes and
remaining open to alternative strategies when roadblocks
were encountered.

Surprisingly, prior to reaching a stage when emulation
would be incorporated into the process, the team realized
that their regular processes for disk imaging or
reformatting legacy storage media would also require
alternative strategies from their typical workflows due to
the conservation requirements for the artwork. In addition,
the challenges encountered during emulation
experimentation uncovered unique legacy hardware issues
that had not yet been seen in previous EaaSI use cases.
This required adapting typical preservation and
conservation workflows for born-digital objects --
specifically, born-digital artworks with both hardware and
software components -- from start to finish.

The following paper documents the case study, which
includes disk imaging of the artwork and investigating
emulation as an assessment and exhibition strategy, along
with context for the artwork from the gallery’s collection.
While the actions taken by the Tree Turbine preservation
team fell within the overall scope of a standard digital
preservation workflow, it diverged in ways that opened
new avenues for the study of preserving born-digital
artworks in a way that preserves the era-specific integrity
of these works so they can be experienced by the public for
years to come.

Third Summit on New Media Art Archiving- Proceedings (Ver. 2.0)

80

mailto:david.cirella@yale.edu
mailto:claire.fox@yale.edu
mailto:ethan.gates@yale.edu
mailto:madeline_smith@moma.org

Artwork Background

Joseph Smolinski’s Tree Turbine is a high-definition digital
animation video artwork. Created in 2007, the artwork is
part of a series Smolinski created around the concept of
what humankind’s potential biotech future might look like.
Smolinski began “working with the imagery of cellular
communication towers disguised as trees,” thinking about
how to use the aesthetic of the common cell tower tree to
build, as he describes it, “a spinning tree turbine that would
generate usable electricity and camouflage into the
landscape.” [3] Tree Turbine is Smolinski’s first
envisioning of this functioning electric wind turbine,
created as an animated concept video for a 20-foot tall
“tree turbine” prototype Smolinski later built in 2008 as
part of an exhibition at the Massachusetts Museum of
Contemporary Art, United States.

Tree Turbine was created during a period in which
Smolinski was beginning to explore how to translate his
work into different mediums, including the use of 3D
animation. 3D animation has since become a part of his
regular artistic practice. [4] Joseph Smolinski is a
multidisciplinary artist and educator based in New Haven,
Connecticut. Through his artist practice, Smolinski
questions “the shifting roles of technology within
communication networks, energy and oil companies, and
the industrial agricultural infrastructure, which indelibly
shape the so-called natural environment.” [5]

The digital animation runs on a 3 minutes 40 second
loop, depicting a series of power-generating wind turbines
in the form of fake pine trees that slowly spin in the wind
as the animation moves through various scenes where the
turbines are installed and generating power, including a
suburban neighborhood, a landfill, a cabin, a roadside
electric car charging station, and a view of the Los Angeles
skyline. [6]

As a physical artwork, the core components of Tree
Turbine consist of an H.264 MOV digital video file stored
on a 2006 Mac Mini computer. The Mac Mini is connected
to a modified Apple 23-inch cinema display monitor,
dating from between 2004 and 2008, that displays and
plays the digital file, in past exhibitions using the Apple
Quicktime application as the playback method. A
dedicated mouse and keyboard was used to control the
computer and monitor.

Process

Various qualities of the artwork required a multifaceted
approach to preservation that protected the integrity of the
current, functionally accessible piece, and also considered

what future access, beyond the lifespan of the physical
object, would include.

The integrated nature of the artwork, encompassing both
the digital file of the animation and the playback
environment (including the software, operating system, and
computer hardware), presented various challenges.

Challenges

The requirement to maintain the physical integrity of the
artwork precluded what would have been the library team’s
normal practice of removing the hard disk and imaging it
using a write blocker while cloning the data.

Replicating the digital file of the animation fell short of
preserving the full object, including playback software and
operating environment. In addition, any attempt to
duplicate the file from within the operating environment
used for exhibition could result in unintended changes to
the data or supporting environment.

Future access to the artwork as result of these
preservation actions should be as close as possible to the
original exhibition.

Disk Imaging

To strictly maintain the physical integrity of the host
system while preserving the work, we devised a process
using a Linux-based LiveCD to operate the original
hardware to create a full copy of the internal disk to an
external hard drive.

A LiveCD is a type of operating system that runs in
read-only mode from a CD or DVD via the internal optical
disc drive. All data generated during the session is held in
system RAM and is flushed on power-down, protecting the
internal disk from modification. [7] For compatibility with
the specific computing hardware, the
ubuntu-13.04-desktop-amd64+mac LiveCD was used to
operate the Mac Mini. [8]

Once the LiveCD system was booted, the “Ishw”
command line utility was run to document the internal
hardware components and provide details about the hard
disk including, the size, partition listing, serial number, and
disk UUID. [9] Next, a secondary external hard drive was
attached via USB and mounted to serve as the destination
for the image of the internal disk. As destination for the
clone, the secondary hard drive needed to be reformatted to
a filesystem, both compatible with the decade-old
operating system chosen for our LiveCD and able to
support file sizes large enough to store our intended disk
image file. The ext4 filesystem, commonly used by
Linux-based operating systems, satisfied both
requirements. [10]

Third Summit on New Media Art Archiving- Proceedings (Ver. 2.0)

81

For capturing the highest fidelity copy of the work, the
method of block-level copying was chosen to create a
bit-stream duplicate of the internal disk. An imaging
process of this type accesses all sectors of the source disk
and replicates every block to a destination disk or file.
During this operation, the source disk remains unmounted,
negating the risk of any changes or new data being written
to the source disk. The output of a block-level copy at the
device level captures all sectors on the physical disk,
including unused or previously used space, and all
partitions regardless of what is visible to the host system
performing the imaging.

This type of image is viable for use in various methods
of long-term access. The full image can be dumped back
onto a new physical hard disk, enabling a replacement
drive to be used in the original hardware. The image can be
mounted from a modern host system to gain file-level
access to the disk image contents. Using a compatible
emulator, the image can also be booted in a virtual,
emulated computing environment configured to mimic the
original hardware.

The “dd” command line utility was used to perform the
block-level copy of the internal disk to the destination
drive. The command takes the source and destination as
parameters, along with options that specify block-size and
conversion behavior. To safe-guard against accidental write
to the source drive, output from the following command
line utilities were evaluated to verify the device names,
locations, and status of each drive: “fdisk” for reporting
sector size, disk identifiers, and device path and “df” to
verify the source drive had not been mounted before
imaging. [11, 12]

After verifying our invocation, the dd command was run
with the “conv=noerror,sync” option. These set error
handling parameters in the case that any disk sector returns
a read error. The “noerror” option instructs dd to advance
to the next sector and keep imaging; sync instructs dd to
pad a read error sector in the destination copy, keeping the
sequence of data in the copy readable. [13] In this case,
producing an image that captures read errors, should they
exist, allows the maximum amount of data to be cloned. It
is also possible that the error is returned when reading an
empty sector, thus no data is lost despite the error.

Executing the dd command cloned 80026361856 bytes
(80 GB) in 3328.56 seconds, at a rate 24.0 MB/s,
producing our block-level copy of the internal disk.

With the cloning of the internal disk complete, we
proceeded to verify the integrity of our clone and establish
a hash value to be used in future verifications. The first
step included creating a checksum of the source data by
using the md5Ssum utility to compute a hash value for the

internal disk drive. [14] Next, a checksum of our disk
image file was computed using the same mdSsum utility,
before comparing the values from each, finding identical
output. The checksum value has been stored alongside the
image file and will be used to verify the integrity of the
image file following moves between different systems and
storage locations.

After confirming a bit-perfect copy of the disk contents,
we performed verification of content access by mounting
the image on a modern Linux system to access and copy
individual files from the disk image. This proved the
viability of the cloned disk, specifically the ability to
mount the file system of the imaged partitions from an
external system to access the original files.

Emulation

The open source emulator QEMU was selected for
attempting to run the Mac Mini disk image in emulation, as
it is currently the only emulator both compatible with the
EaaSI framework and capable of running Intel x86-based
systems similar to the Mac Mini (to the team's knowledge,
no open source emulator is available to specifically
recreate a 2006 Mac Mini). [15]

Working directly with the block-level raw disk image
presented challenges for experimenting and testing the disk
image in emulation. Sharing an 80 GB file between remote
team members and systems (like EaaSI) would require
lengthy upload/download times given bandwidth
limitations, and create an unnecessary strain on EaaSI
computing resources.

To mitigate these concerns, we used the QEMU project's
disk image utility ("qemu-img") to create a sparsified and
losslessly compressed copy of the raw disk image in the
QCOW2 disk image format (essentially to serve as an
"access copy" of the block-level disk image for sharing and
access). Sparsification detects unassigned memory in the
source disk image's file system, allowing the access disk
image copy to only take up as much storage space on the
host system (e.g. digital preservation workstation or EaaSI
server) as is actually used by system and user data in the
guest system/disk image; further lossless compression
(using the zlib library) shrinks the size of the access disk
image even more while still allowing it to be uncompressed
on-the-fly when run in QEMU. [16]

The exact command used was:
$ gemu-img convert -O qcow2 -c¢ raw_disk_image.img
access_disk_image.qcow2

This resulted in an access disk image sized only
approximately 14 GB to the original, raw disk image's 80
GB. The conversion was also reversed and verified against

Third Summit on New Media Art Archiving- Proceedings (Ver. 2.0)

82

the original, raw disk image, again using mdSsum, to
ensure the gemu-img compression was indeed lossless.

Unfortunately, from there, attempts to run the access
disk image on a local workstation using QEMU stalled
almost immediately. Though QEMU can nominally
emulate the same Intel x86 processor architecture used by
the Mac Mini, the specific version of Mac OSX installed
on the Mac Mini - 10.4 - used a unique method for fetching
processor information during the operating system boot
process. [17] This method checked for, and expected,
defined responses unique to the particular CPUs used by
Apple on their hardware, and none of QEMU's emulated
processors (neither its generic x86 emulator, nor a number
of specific emulated CPU models) appear capable of
returning the required response. In other words, the
operating system realizes it is not running on real Mac
Mini hardware and refuses to boot.

After much further experimentation, the only path found
to run the access disk image in QEMU was to obtain
installation media for the Intel x86 version of Mac OSX
10.6 - a later version that does not have the same specific
processor checks built into its kernel - which could
successfully boot in QEMU and be used to update the
operating system on the access disk image from 10.4.10 to
10.6. [18] On subsequent attempts QEMU could then boot
the updated access disk image and allow exploration and
assessment (using QEMU's "snapshot" mode to avoid any
further user alterations, accidental or otherwise). [19]

Though this path marginally moved experimentation
forward, options for further assessment or access remained
limited. Even booting Mac OSX 10.6 requires use of a
custom bootloader not included in default/common
distributions of QEMU. [20] Though this bootloader could
be acquired and used on a local workstation, it is not
currently available in the EaaSI framework, making it
pointless at this point to attempt to upload, run, or share the
updated access disk image in EaaSI. [21] And while initial
evaluation made it appear that no meaningful user data was
changed during the process of upgrading the operating
system from 10.4.10 to 10.6 (the system's user/registration
information, Applications folder, and general file hierarchy
appeared to remain unaltered), the status of the original
Mac Mini as an accessioned artwork once again called into
question whether the OS changes performed would be
deemed too significant by the artist, curators, or scholars.

Logistics - a limited amount of time available to further
pursue the case study; distributed team members;
restricted/limited access to physical space; and the inability
to run the emulation remotely in EaaSI - prevented a
side-by-side comparison of the access disk image emulated

in OSX 10.6 in QEMU against the original hardware
within the scope of this case study.

Conclusion

Over the course of this case study, the Tree Turbine
preservation team encountered a range of challenges and
insights related to digital preservation practice within a
time-based media art conservation context. Primary
takeaways from the work conducted included:

o Legacy Apple hardware presents unique, often
highly specific challenges to both digital
preservation best practices and long-term access,
exhibition, and assessment.

e Working with era-appropriate tools required to
operate legacy hardware requires finding
documentation of technical limitations present in
utilities, tools, and systems from their date of
release.

o Pathways toward professional development are
needed for staff to gain this technical, historical
knowledge, and have the ability to apply it in
practice.

e Collaboration between units and staff with varied
expertise can help reduce the amount of
redundant, siloed knowledge.

e Departmental policies and standards are needed in
order to document these esoteric requirements in
assessments, acquisition records, catalogs, and
other areas where critical documentation is
compiled.

Some of the challenges encountered were anticipated or
have documented precedents. The need to disk image a
hard drive while maintaining the physical integrity of the
host system, for example, was a challenge that was unusual
for a library digital preservation department, but standard
within a museum context with time-based media
collections where art works might include functional
hardware as part of an art object. In that regard, the work
conducted on Tree Turbine allowed the university library
team to expand its disk imaging practices, and the
university art gallery to refine its policies regarding the
care of born-digital art works.

Still, some of the encountered challenges presented new,
as-yet unresolved issues that will require further study,
testing, and documentation. The challenges uncovered by
experimentation with emulation technology and the EaaSI
framework demonstrated the need for specific technical

Third Summit on New Media Art Archiving- Proceedings (Ver. 2.0)

83

and computing knowledge, the need for different units and
staff to collaborate in service of sharing that knowledge
and applying it within the boundaries of departmental
policies and standards, and the capacity to expand existing
digital preservation best practices in service of long-term
access, exhibition, and assessment of born-digital artworks.
Ultimately though, we hope further case studies and efforts
in collaborative emulation services will foster Melanie
Swalwell’s vision for "A Community of Practice [that] will
build confidence in the GLAM sector around born digital
collecting.” [22]

References

[1] Melanie Swalwell, “The Australian Emulation Network:
Accessing Born Digital Cultural Collections”, ISEA 2022
Proceedings of the Second Summit on New Media Art Archiving,
https://isea-archives.siggraph.org/wp-content/uploads/2022/11/IS
EA2022 Proceedings-of-the-Second-Summit-on-New-Media-Art
-Archiving.pdf

[2] “What is EaaSI?”, EaaSI program website, 2022, accessed
December 20, 2022, https://www.eaasi.info/what-is-eaasi

[3] Joseph Smolinski, Yale University Art Gallery artists’
questionnaire, 2021.

[4] Joseph Smolinski, Yale University Art Gallery artists’

questionnaire
[5] Joseph Smolinski, “About”, Smolinski Studio website,
accessed December 19, 2022,

http://www.smolinskistudio.com/about

[6] Joseph Smolinski, Yale University Art Gallery artists’
questionnaire

[7] “Ubuntu Documentation”, LiveCD - Community Help Wiki,
June 2, 2012, December 20, 2022,
https://help.ubuntu.com/community/LiveCD

[8] “Ubuntu 13.04 (Raring Ringtail)”, Ubuntu 13.04 server
installation media, accessed December 20, 2022,
https://old-releases.ubuntu.com/releases/13.04/

[9] Carla Schroder, “Getting Detailed Information About Your
Computer Hardware”, in Linux Cookbook: Essential Skills for
Linux Users and System & Network Administrators, 2" Edition
(O’Reilly Media, 2021),
https://go.oreilly.com/stanford-university/library/view/-/97814920
87151/

[10] Carla Schroder, “Managing Disk Partitioning with parted”,
in Linux Cookbook: Essential Skills for Linux Users and System
& Network Administrators, 2" Edition.

[11] “Fdisk(8) — Linux Manual Page”, Man7.org, 2022, accessed
December 21, 2022,
https://man7.org/linux/man-pages/man8/fdisk.8.html

[12] Mark Sobell, 4 Practical Guide to Linux Commands, Editors
and Shell Programming (Pearson, 2017), 793.

[13] Shiva V.N. Parasam, “Evidence Acquisition and Preservation
With Dc3dd And Guymager”, Digital Forensics with Kali Linux —

accessed

Second Edition (Packt Publishing, 2020),
https://learning.oreilly.com/library/view/~/9781838640804

[14] “mdSsum(l) — Linux Manual Page”, Man7.org, 2022,
accessed December 21, 2022,
https://man7.org/linux/man-pages/manl/mdSsum.1.html

[15] QEMU Project Developers, “x86 System emulator”, QEMU
documentation, 2022, accessed December 20, 2022,
https://www.qemu.org/docs/master/system/target-i386.html

[16] QEMU Project Developers, “Disk image file formats”,
QEMU documentation, 2022, accessed December 20, 2022,
https://www.qemu.org/docs/master/system/qemu-block-drivers.ht

ml?highlight=qcow2#cmdoption-image-formats-arg-qcow2

[17] Landon Fuller, “Mac OSX 10.4 under VMware Fusion on
Modern CPUs”, Landon Fuller’s blog, December 17, 2013,
accessed December 20, 2022,
https://landonf.org/2013/12/index.html

[18] Ladon Fuller, “Mac OSX 10.4 under VMware Fusion on
Modern CPUs”.

[19] QEMU Project Developers, “Snapshot mode”, 2022,
December 20, 2022,
https://qemu.readthedocs.io/en/latest/system/images.html?highlig
ht=snapshot#snapshot-mode

[20] Gabriel L. Somlo, “Running Mac OS X as a QEMU/KVM
Guest”, October 21, 2018, accessed December 20, 2022,
http://www.contrib.andrew.cmu.edu/%7Esomlo/OSXKVM/

[21] “gemu-eaas”, Emulation-as-a-Service/emulators source code
repository, accessed December 20, 2022,
https://gitlab.com/emulation-as-a-service/emulators/qemu-eaas
[22] Melanie Swalwell, “The Australian Emulation Network:
Accessing Born Digital Cultural Collections”

accessed

Author(s) Biography(ies)

David Cirella (he/him) is a Digital Preservation Librarian at Yale
University Library. In this role he works with stakeholders from
around the institution towards the long-term preservation of their
digital content. His areas of interest include digital forensics,
programming, and information retrieval. He currently serves on
the Documentation and Training Committee of the BitCurator
Consortium.

Claire Fox (she/her) is a Digital Preservation Librarian at Yale
University Library, where she oversees the administration,
support, and expansion of Yale's instance of the
Emulation-as-a-Service Infrastructure (EaaSI) program of work,
with an aim to provide broader access to legacy born-digital
collections at Yale. She is a member of the Software Preservation
Network’s Coordinating Committee and Metadata Working
Group, and holds an MA from New York University in Moving
Image Archiving and Preservation.

Ethan Gates (he/him) is a Software Preservation Analyst at Yale
University Library and User Support Lead for the EaaSI
(Emulation-as-a-Service Infrastructure) program of work. He is
responsible for troubleshooting and documenting the EaaSI

84

Third Summit on New Media Art Archiving- Proceedings (Ver. 2.0)

https://learning.oreilly.com/library/view/~/9781838640804

platform, as well as providing training and community support to
the U.S.-based EaaSI Network and digital preservation field at
large on topics of emulation and software preservation. He wrote
the entry on "Emulation" in The Handbook of Archival Practice
(Rowman & Littlefield, 2021) and is a member of the Software
Preservation Network's Community Engagement Collaborative,
the BitCurator Consortium's Membership Committee, and the
Association of Moving Image Archivists' Open Source
Committee.

Madeline “made” Smith (they/them) is the David Booth Fellow in
Media Conservation at The Museum of Modern Art (MoMA).
They have worked with media collections at the Center for
Constitutional Rights, ArteEast, and Ballet Tech, all in New York;
the Los Angeles County Museum of Art; the Smithsonian
American Art Museum, in Washington, D.C.; the Yale University
Art Gallery, in New Haven, CT; and with media artists’ personal
collections. made holds a B.A. in American Studies and English
from the University of Virginia (2015), and an M.A. in Moving
Image Archiving and Preservation from New York University’s
Tisch School of the Arts (2020). Their master’s thesis was on the
history of the Matters in Media Art web resource and the
stewardship of time-based media in art museum collections.

Third Summit on New Media Art Archiving- Proceedings (Ver. 2.0)

85

